Gravitation
http: Hub
General Learning Resources
GRAVITATION: Universal Law of Gravitation
$F \propto \frac{m_{1} m_{2}}{r^{2}} \text { or } F=G \frac{m_{1} m_{2}}{r^{2}}$
where $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ is the universal gravitational constant.
Newton’s Law of Gravitation in vector form :
$\vec{F_{12}} = \frac{Gm_1m_2}{r^2} \hat{r_{12}}$
$ \vec{F_{21}} = \frac{Gm_1m_2}{r^2} \hat{r_{21}}$
Now $\hat{r_{12}} = -\hat{r_{21}}$
Thus, $\vec{F_{21}}=\frac{-G m_1 m_2}{r^2} \hat{r}_{12}$
Comparing above, we get $\vec{F_{12}}=-\vec{F_{21}}$
Gravitational Field:
$E=\frac{F}{m}=\frac{G M}{r^{2}}$
Gravitational Potential:
$V=-\frac{G M}{r} . \quad E=-\frac{d V}{d r}$
-
Ring
$V=\frac{-G M}{x \text { or }\left(a^{2}+r^{2}\right)^{1 / 2}} \quad \quad E=\frac{-G M r}{\left(a^{2}+r^{2}\right)^{3 / 2}} \hat{r}$
$\text { or } E=-\frac{G M \cos \theta}{x^{2}}$
Gravitational field is maximum at a distance, $r= \pm a / \sqrt{2} \text { and it is }-2 G M / 3 \sqrt{3} a^{2}$
-
Thin Circular Disc
$V=\frac{-2 G M}{a^{2}}\left[\left[a^{2}+r^{2}\right]^{\frac{1}{2}}-r\right] E=-\frac{2 G M}{a^{2}}\left[1-\frac{r}{\left[r^{2}+a^{2}\right]^{\frac{1}{2}}}\right]=-\frac{2 G M}{a^{2}}[1-\cos \theta]$
-
Non conducting solid sphere
(a) Point P inside the sphere $r \leq a$, then
$V=-\frac{G M}{2 a^{3}}\left(3 a^{2}-r^{2}\right) E=-\frac{G M r}{a^{3}}$
At the centre $V=-\frac{3 G M}{2 a} \quad \text{and} \quad E=0$
(b) Point $P$ outside the sphere $r \geq a$, then
$ V=-\frac{G M}{r} \quad E=-\frac{G M}{r^{2}}$
-
Uniform Thin Spherical Shell/ Conducting solid sphere
(a) Point $P$ Inside the shell
$r \leq a$, then $V=\frac{-G M}{a} \quad E=0$
(b) Point $P$ outside shell
$r \geq a$, then $V=\frac{-G M}{r} \quad E=-\frac{G M}{r^{2}}$
Variation Of Acceleration Due To Gravity :
-
Effect of Altitude
$g_{h}=\frac{G M_{e}}{\left(R_{e}+h\right)^{2}}=g\left(1+\frac{h}{R_{e}}\right)^{-2}$
$\simeq g\left(1-\frac{2 h}{R_{e}}\right) \text { when } h < <R \text {. }$
-
Effect of depth $g_{d}=g\left(1-\frac{d}{R_{e}}\right)$
-
Effect of the surface of Earth
The equatorial radius is about $21 \mathrm{~km}$ longer than its polar radius. We know, $g=\frac{GM_{e}}{R_{e}^{2}}$
Hence $g_{\text {pole }}>g_{\text {equator }}.$
Satellite Velocity (Or Orbital Velocity)
$v_{0}=\left[\frac{G M_{e}}{\left(R_{e}+h\right)}\right]^{\frac{1}{2}}=\left[\frac{g R_{e}^{2}}{\left(R_{e}+h\right)}\right]^{\frac{1}{2}}$
When $h«R_e$ then $v_0=\sqrt{gR}$
$\therefore \quad v_{0}=\sqrt{9.8 \times 6.4 \times 10^{6}}$
$=7.92 \times 10^{3} \mathrm{ms}^{-1}=7.92 \mathrm{km} \mathrm{s}^{1}$
Time period of Satellite:
$T=\frac{2 \pi\left(R_{e}+h\right)}{\left[\frac{g R_{e}^{2}}{\left(R_{e}+h\right)}\right]^{\frac{1}{2}}}=\frac{2 \pi}{R_{e}}\left[\frac{\left(R_{e}+h\right)^{3}}{g}\right]^{\frac{1}{2}}$
Energy of a Satellite:
$U=\frac{-G M_{e} m}{r} \quad \text{K.E.} =\frac{G M_{e} m}{2 r} ;\quad \text{then total energy:} \quad E=-\frac{G M_{e} m}{2 R_{e}}$
Kepler’s Laws
Law of area :
-
The line joining the sun and a planet sweeps out equal areas in equal intervals of time.
-
Areal velocity: $ v_A=\frac{\text { area swept }}{\text { time }}=\frac{\frac{1}{2} r(r d \theta)}{d t}= \frac{1}{2} r^{2} \frac{d \theta}{d t}= \text{constant .}$
-
Hence $\frac{1}{2} r^{2} \omega=$ constant.
Law of periods :
$\frac{T^{2}}{R^{3}}=\text{constant}$
Effective Gravitational Acceleration
Considering both gravitational and centrifugal effects, the effective gravitational acceleration at any latitude is:
$g_{\text{effective}} = g - \omega^2 r$
Where: $\omega$ is the angular velocity of the Earth’s rotation.
At the poles, this simplifies to:
$g_{\text{effective, poles}} = g, \quad \text{because} \quad a_c = 0 \quad \text{at the poles.}$
Escape velocity
The escape speed from the surface of the earth is $ v = \sqrt{2G \frac{M}{r}}$